Monday, May 25, 2015

Newton Law of motion

Newton's laws of motion are three physical laws that together laid the foundation for classical mechanics. They describe the relationship between a body and the forces acting upon it, and its motion in response to said forces. They have been expressed in several different ways over nearly three centuries,[1] and can be summarised as follows.
First law:When viewed in an inertial reference frame, an object either remains at rest or continues to move at a constant velocity, unless acted upon by an external force.[2][3]
Second law:The vector sum of the external forces F on an object is equal to the mass m of that object multiplied by the acceleration vector a of the object: F = ma.
Third law:When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.
The three laws of motion were first compiled by Isaac Newton in his Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), first published in 1687.[4] Newton used them to explain and investigate the motion of many physical objects and systems.[5] For example, in the third volume of the text, Newton showed that these laws of motion, combined with his law of universal gravitation, explained Kepler's laws of planetary motion.
Newton's laws are applied to objects which are idealised as single point masses,[6] in the sense that the size and shape of the object's body are neglected to focus on its motion more easily. This can be done when the object is small compared to the distances involved in its analysis, or the deformation and rotation of the body are of no importance. In this way, even a planet can be idealised as a particle for analysis of its orbital motion around a star.
In their original form, Newton's laws of motion are not adequate to characterise the motion of rigid bodies and deformable bodiesLeonhard Euler in 1750 introduced a generalisation of Newton's laws of motion for rigid bodies called the Euler's laws of motion, later applied as well for deformable bodies assumed as a continuum. If a body is represented as an assemblage of discrete particles, each governed by Newton's laws of motion, then Euler's laws can be derived from Newton's laws. Euler's laws can, however, be taken as axioms describing the laws of motion for extended bodies, independently of any particle structure.[7]
Newton's laws hold only with respect to a certain set of frames of reference called Newtonian or inertial reference frames. Some authors interpret the first law as defining what an inertial reference frame is; from this point of view, the second law only holds when the observation is made from an inertial reference frame, and therefore the first law cannot be proved as a special case of the second. Other authors do treat the first law as a corollary of the second.[8][9] The explicit concept of an inertial frame of reference was not developed until long after Newton's death.
In the given interpretation massaccelerationmomentum, and (most importantly) force are assumed to be externally defined quantities. This is the most common, but not the only interpretation of the way one can consider the laws to be a definition of these quantities.
Newtonian mechanics has been superseded by special relativity, but it is still useful as an approximation when the speeds involved are much slower than the speed of light.

No comments:

Post a Comment